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ARTICLE

Spatial semiparametric models improve estimates of species
abundance and distribution
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Abstract: Accurate estimates of abundance are imperative for successful conservation and management. Classical, stratified
abundance estimators provide unbiased estimates of abundance, but such estimators may be imprecise and impede assessment
of population status and trend when the distribution of individuals is highly variable in space. Model-based procedures that
account for important environmental covariates can improve overall precision, but frequently there is uncertainty about the
contribution of particular environmental variables and a lack of information about variables that are important determinants
of abundance. We develop a general semiparametric mixture model that incorporates measured habitat variables and a non-
parametric smoothing term to account for unmeasured variables. We contrast this spatial habitat approach with two stratified
abundance estimators and compare the three models using an intensively managed marine fish, darkblotched rockfish (Sebastes
crameri). We show that the spatial habitat model yields more precise, biologically reasonable, and interpretable estimates of
abundance than the classical methods. Our results suggest that while design-based estimators are unbiased, they may exaggerate
temporal variability of populations and strongly influence inference about population trend. Furthermore, when such estimates
are used in broader meta-analyses, such imprecision may affect the broader biological inference (e.g., the causes and conse-
quences of the variability of populations).

Résumé : Des estimations exactes de 'abondance sont essentielles au succeés de la conservation et de la gestion. Si les estimateurs
d’abondance stratifiés classiques fournissent des estimations non biaisées de I’abondance, ces estimateurs peuvent étre imprécis
ou entraver I’évaluation de I’état et de la tendance de la population si la répartition des individus est trés variable dans I’espace.
Si des procédures basées sur des modéles qui tiennent compte d’importantes covariables environnementales peuvent améliorer
la précision globale, il y a souvent une incertitude associée a la contribution de différentes variables environnementales et un
manque d’information sur les variables qui sont d’importants déterminants de ’abondance. Nous avons développé un modele
de mélange semi-paramétrique général qui incorpore des variables mesurées de I’habitat et un terme de lissage non paramé-
trique pour tenir compte des variables non mesurées. Nous comparons cette approche d’habitat spatial a deux estimateurs
d’abondance stratifiés a la lumiére d’observations sur un poisson marin faisant I’objet d’une gestion intensive, le sébaste tacheté
(Sebastes crameri). Nous démontrons que le modéle d’habitat spatial produit des estimations de 1’abondance plus précises,
interprétables et raisonnables du point de vue biologique que les méthodes classiques. Nos résultats donnent a penser que, si les
estimateurs basés sur la conception de I’échantillonnage sont non biaisés, ils peuvent exagérer la variabilité temporelle des
populations et influencer fortement I'inférence concernant la tendance démographique. En outre, quand ces estimations sont
utilisées dans des métaanalyses plus larges, cette imprécision pour avoir une incidence sur I'inférence biologique élargie (p. ex.
les causes et conséquences de la variabilité des populations). [Traduit par la Rédaction]

The use of habitat variables in abundance estimation has a long
history in terrestrial ecosystems, but in marine ecosystems basic
spatial habitat information has been lacking until the past decade
or so. Examples include high-resolution bathymetry and a variety
of oceanographic variables (e.g., Sbrocco and Barber 2013). While
habitat data have informed the location of marine reserves (Ward
et al. 1999) and the identification of vulnerable and important
biogenic habitats (Krigsman et al. 2012), marine habitat and pop-
ulation dynamics are rarely integrated. Furthermore, in both
terrestrial and marine settings, species-habitat associations are

Introduction

Accurate assessment of population status and trend are funda-
mental to the successful conservation and management of species.
Imprecise or biased estimates of population biomass or abundance
may cause managers to fail to take actions when warranted or
induce changes to management when none are required. Histori-
cally, resource managers have relied on classical, design-based sam-
pling methods, such as stratified randomized sampling (Cochran
1977). If abundance is driven by habitat variables, explicitly account-
ing for these variables should provide more precise estimates of

abundance than design-based approaches that ignore habitat infor-
mation. Recent efforts have shown how habitat covariates can be
integrated with distance sampling and tag-resighting procedures to
improve abundance estimates of terrestrial vertebrates (Royle et al.
2013; Sillett et al. 2012).

usually assessed based on simple overlap and focus on identifying
areas of high quality habitat for a given species or community
(Johnson et al. 2013). Most habitat studies combine data collected
over multiple years, so among-year differences in abundance and
distribution are ignored (Boyce et al. 2002; Johnson et al. 2013). In
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contrast, managers of marine resources tends to focus on time-
series trends and typically ignore or integrate across spatial and
habitat variation (but see Maunder et al. 2006; Lewy and Kristensen
2009; Rooper and Martin 2012). A typical approach is to estimate
abundance by creating a grid in the ocean along latitude and
longitude lines and estimate a mean density of fish within each
grid cell (Brynjarsdéttir and Stefdnsson 2004). With newly avail-
able spatially explicit habitat and marine survey data, the link
between habitat and abundance surveys provide the potential to
improve the accuracy of abundance estimates.

There are methodological and computational challenges for in-
tegrating habitat data into abundance estimates. First, as surveys
are repeated over time, the time-series nature should be maintained.
Surveys typically done in freshwater and terrestrial systems (e.g.,
distance sampling, mark-recapture) are prohibitive in many ma-
rine systems due to the magnitude of fish populations and the
difficulty in sampling oceanic habitats. In marine ecosystems, most
spatio-temporally explicit samples are taken from survey vessels
and only rarely are the same locations sampled repeatedly over
time. This makes traditional time-series approaches difficult to im-
plement. Second, while spatially explicit marine covariates such
as depth, temperature, and benthic substrate are generally avail-
able, other important habitat covariates are unmeasured or
logistically unfeasible to measure. For example, the distribution
of habitat-forming species such as corals and sponges remain un-
known outside of localized areas (e.g., Krigsman et al. 2012). This
requires models that explicitly account for abundance over time
and can integrate both measured and unmeasured habitat variables.

We describe a spatial model for estimating abundance time-
series of an exploited fish (darkblotched rockfish, Sebastes crameri)
along the continental margin of the northeast Pacific. We com-
pare this model, which takes advantage of newly available habitat
data, with two existing approaches that rely on classical stratifi-
cation methods. Our methodology maintains biological interpret-
ability of model parameters yet accounts for poorly understood
relationships between unobserved covariates and fish occurrence
and abundance via a semiparametric model. Relative to classical
stratification approaches, our spatial model provides information
about abundance trends on a finer spatial grain and is robust with
relatively small sample sizes. We show that our model’s structure
increases the precision of within- and among-year abundance
estimates.

Methods

Statistical models

All three of our statistical modeling approaches share the same
basic form, and use the same data. We write the response, catch in
biomass of a species at position s,,, as Z(s;), where i indexes the
observation and y indexes year.

iy

Design-based model

The classical nonparametric design-based estimate for biomass
in region j and year y is calculated as the sample mean of catch
divided by area swept for each tow, Y(s;),

-1 My Z(Si )
(M Dy =Am, Ei Wli)

where A; and n,, are the total area and number of observations,
respectively. The variance of each region is calculated as sample
variance divided by sample size (Cochran 1977). While the design-
based model provides an unbiased estimate of overall biomass,
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the statistical efficiency of this estimator is dependent upon the
distribution of Z. In many ecological data sets (Thorson et al. 2011),
Z can have a large number of zero observations with strong posi-
tive skew and wide tails (high kurtosis), leading to unbiased but
imprecise estimates of biomass.

Stratified delta model

Species distributions with large proportions of zeros motivate
the use of mixture distributions that can break the observed catches
into two sub-models: a model describing the presence or absence
of a species, and a model for the distribution of catches condi-
tioned on the presence of fish (Stefdnsson 1996; Maunder and Punt
2004). This approach has gained favor for its flexibility in model-
ing zero observations in sampling data (Martin et al. 2005). We
write the random variable Z(s; ) as a mixture distribution conditioned
on model parameters. First, let B(s;) be a binary variable that
equals 1 if the species is present and 0 otherwise, B(s;)|¢(s;,) ~
Bernoulli(¢(s;,)). Here ¢(s;,) is the probability of catching at least
one individual; therefore, the probability of catching zero fish is
1 - ¢(s;,). Then conditionally,

Z(sy)|B(s,) = 0 ~ &,

Z(s,)|Bls,) = 1, pls,), ¥ ~ Gamma(us,). )

where §, is the Dirac distribution at 0 and the second line provides
the distribution of nonzero biomass conditional on the presence
of the species. While a range of distributions could be used to model
positive catches, we adopted a gamma distribution, Gamma(u(s;,), {)
(Maunder et al. 2006; Lewy and Kristensen 2009) parameterized in
terms of its mean, u, and coefficient of variation, ¢'. The models
are known in the fisheries literature as delta generalized linear
mixed models (6-GLMM; Stefdnsson 1996; Maunder and Punt 2004)
and more generally as hurdle models (Ver Hoef and Jansen 2007).
The two components of the mixture are assumed to be indepen-
dent. We used a logit-link function for the probability of occur-
rence and a log-link for the positive component, so the general
form 8-GLMM is

logit(dysy)) = Xy(sy)B1 + 1Y(sy)

B log(us,) = X,(s,)B, + valog(¥(s,)

with the subscripts making explicit that the covariates in the
probability of occurrence model need not be identical to the co-
variates of the positive model. Here v is an offset parameter that
controls for variation in the area sampled by each survey trawl
observation. We fix y; = y, = 1. All covariates in this model are
based on strata defined by latitudinal breaks and depth, so the Xs
are design matrices with categorical covariates. We hereafter re-
fer to this model as the strata model.

Spatial habitat delta model

In our spatial 8-GLMM (hereafter, habitat model), all of the hab-
itat variables are treated as continuous surfaces, so each observed
trawl location has a distinct set of covariates associated with each
observed point. The important distinction between the two delta
models is that for the strata model the expected probability of
occurrence and expected biomass are identical for each observa-
tion within predefined categories, whereas for the habitat model
each point has a unique expectation. To incorporate unobserved
habitat variables, we extend eq. 3 to include multivariate normal
spatially smooth terms, w, yielding a semiparametric model,

'The expected value of this parameterization is E[x] = u and coefficient of variation, CV[x]| = . This gamma density can be connected to the more familiar

Gamma(«, B) parameterization by substituting « = 2 and 8 = (w2
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logit(dj(s;))

= Xy(sy)By + %Y(sy) + wy(s)
log(psy)) = X,(s;

(Siy)B2 + 712108(Y(sy))+wys)

The parameter w represents a spatially smooth surface that
allows for locations to deviate from the predicted value driven by
habitat variables alone. The habitat model also includes a fixed
year effect that allows both the occurrence and positive models to
shift up or down among years. For consistency among models we
assumed identical effort offsets.

For the habitat model, an important consideration is how to
model and interpret the spatial term w. We model w as a smooth
spatial surface (Cressie and Wikle 2011), w ~ MVN(0, C,,(d, 0, 02)),
where C,(d, 0, 02) is a covariance matrix with parameter 6 that
controls the correlation between points as a function of distance, d.
We assume the spatial variance, ¢2, is homogeneous and use an
isotropic exponential correlation model (Cressie and Wikle 2011).
In practice w provides a flexible means to account for factors not
explicitly accounted for by the habitat covariates (Latimer et al.
2009; Finley et al. 2009).

We construct our spatial correlation matrix to avoid confound-
ing spatial and temporal components of variation. We only allow
samples collected within a given year to have spatial covariance
(i.e., the covariance is separable; Cressie and Wikle 2011). The
covariance matrix, C,(d, 0, 02), is block-diagonal with elements
comprised of year-specific spatial covariance matrices,

Cpos 0 = 0

0 0 0 Cyon

where C,,; is the covariance matrix for observations in 2003, for
example. This structure allows the annual spatial covariances to
be independent, accounting for the possibility for interannual
changes in species distribution to generate a distinct clustering
pattern for each year. While we initially attempted to estimate a
distinct 6 and o2 for each year, this proved to be difficult so for all
final estimates we used a single 6 and a single o2 shared across all
years. We note that an alternative approach would be to model
yearly variation in 6 and o2 using hierarchical structures. Because
the two components of the mixture distribution are independent,
the parameters 6 and o2 for the two components are also esti-
mated independently.

Due to the computational challenges that arise in the estima-
tion of spatial models, we used predictive process models to re-
duce model dimension and abbreviate computing time (Banerjee
et al. 2008; Latimer et al. 2009; Finley et al. 2009). Briefly, the predic-
tive process approach develops an approximation of the full cova-
riance matrix C,, using a much smaller covariance matrix. To do
this, we establish a new set of points that are interspersed with
the observed locations. These locations are known as knots, and
the number of knots is much smaller than the number of obser-
vations. For the statistical model, we have to estimate a spatial
component for each knot location, w*, instead of a spatial compo-
nent for each observation. We estimate a spatial covariance ma-
trix among the knots and predict the value of spatial effects at the
observed points from the knots. The key advantage of introducing
the knots is that we only have to calculate the inverse of the
covariance matrix of the knots; because the length of w* is much
less than the length of w, the computational savings are substan-
tial. We used Bayesian methods to implement all of our models.
Model implementation and other technical details are described
in the Appendix.

Application to darkblotched rockfish

Darkblotched rockfish are a long-lived species (max. age >100 years)
that range from Alaska to southern California, but they are most
abundant from southern British Columbia to northern California
(Love et al. 2002). They are found at depths of 100-600 m and
individuals tend to migrate to deeper waters as they mature and
age (Nichol 1990). Adults tend to rest on soft substrate near cobble
and boulders. Since the 1950s, darkblotched rockfish have been
fished commercially and were declared a species of conservation
concern in 2000 (Gertseva and Thorson 2013). Between 2003 and
2011 (and continuing), darkblotched rockfish were sampled in
fishery-independent trawl surveys (~750 trawls annually from
mid-May to late October) as part of a larger effort by NOAA’s
Northwest Fisheries Science Center (NWESC; Bradburn et al. 2011).
For each trawl, the number and biomass of all fish are recorded,
along with average depth and bottom water temperature. Detailed
descriptions of the sampling design, gear, and sampling protocols
used for this survey are found elsewhere (Keller et al. 2012). Note
that because bottom trawls selectively sample fish (e.g., very small
fish fit through the trawl mesh and will not be observed), we are
estimating the biomass of fish that can be observed in the trawls,
not necessarily the entire population. We compiled information
on benthic sediment grain size and the location of rock outcrops
from NMFS (2013).

We fit the three models to the darkblotched rockfish survey
data using all 2003-2011 trawl surveys that occurred north of
Point Conception, California (34.5°N latitude, 5090 tows in total).
To illustrate the consequences of the different modeling assump-
tions for biomass, we compared three fisheries regions off the
coasts of Washington and Oregon, USA (regions A, B, and C; Fig. 1).
For the strata model, we treated strata and year effects as fixed in
both probability of occurrence and positive components and in-
teractions between strata and year as random (Thorson and Ward
2013).

For the habitat model, we estimated the occurrence and posi-
tive model with four potential habitat variables: depth, sediment
grain size, distance to nearest rock outcrop at least 1 ha in area,
and bottom temperature. We considered linear and quadratic
terms for habitat variables, but we did not consider interactions
among covariates (see Appendix A).

Following model estimation, we generated an estimate of biomass
for each model for the three regions off the Oregon and Washington
coasts. For the design model, we calculated the estimated dark-
blotched biomass for each of the three target regions (eq. 1). For
the strata model, we calculated the posterior density of dark-
blotched for each region, A;, which has expected value, E[\;] =
E[¢;,|E[p;,]- We calculated total biomass and its credible interval
by expanding the biomass per hectare to the total number of
hectares in each region. For the habitat model, we generated a
posterior density surface for the entire region by calculating the
predicted density for each grid cell on a regular 2 km x 2 km grid.
For comparison, we provide biomass estimate and credible inter-
vals for regions A, B, and C using the density predictions from the
2 km x 2 km grid and expanding the densities to the total area of
each region.

Results and discussion

For our focal zone from 43 to 47.5°N latitude, we show strong
differences in predicted densities for the stratified and habitat
model in 2007 (Fig. 1; see also Fig. Al). The habitat model shows
how considerable variation may exist within a region and how
this variation is averaged over in the strata model (Fig. 1; results
for the design model are very similar). Despite the variation
within the strata, estimates of mean occupancy and biomass re-
sults are very similar between the design, strata, and habitat mod-
els in 2007 (Fig. 2; Fig. A2). For estimated total biomass, the three
models provide distinct time series of total biomass in each region
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Fig. 1. Predicted darkblotched rockfish density (kg-ha-!) in 2007. Crosses (+) indicate the location of survey trawls >500 m from rocky
substrate, dots (¢) indicate trawl location near rocky substrate (<500 m). (Left) Expected kilograms of darkblotched rockfish per hectare from
the habitat model. Mean of the posterior predictive distribution is shown for the centroid of each 2 km x 2 km grid cell. Faint lines outline
the regions used in the strata based models. (Center) Expected catch per hectare from the strata model in the three statistical regions. Arrows
in the legend bar indicate the expected catch for the three regions. (Right) Black patches are rocky substrate. Faint lines delineate statistical

region boundaries.
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(Fig. 3). Because we lack distance-sampling and mark-recapture
data to adjust both our occupancy and biomass estimates, our
results for both model components must be considered propor-
tional to the true biomass of fish available to the trawl gear (Royle
et al. 2013). With regard to the uncertainty within a given year, the
habitat model provides the most precise estimates of biomass for
all three strata, whereas the design-based estimator is the least
precise (average CV for region A: design = 0.51, strata = 0.38, hab-
itat = 0.36; Table 1). The difference in among-year CV between the

three models is smallest in region B, which has the most observa-
tions (Tables 1, 2).

The most striking difference among models is the decreased
temporal variability in the habitat model relative to the design or
strata models. Both the design and strata models show dramatic
year-to-year fluctuations in biomass. In region B, for example, the
strata model estimates >90% decrease from 2003 to 2004, a 12-fold
increase from 2004 to 2005, before declining again by 90% from
2005 to 2006 (Fig. 3). In contrast, the habitat model shows some
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Fig. 2. Results for the 5-GLMM for darkblotched rockfish. Top row: Histogram of distribution of predicted probability of occurrence for

2 km x 2 km grid cells in 2007 for regions A (left; N = 3966 prediction locations), B (center; N = 1972), and C (right; N = 2477). Bottom row:
Histogram of expected catch for the three strata. In all panels, the dashed line shows the mean for the habitat model and the solid line the
mean from the stratified model. Expected catch for the strata model is undefined for region C (see Appendix A). Note the very long tails in the

abundance models.
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temporal variation but all biomass estimates in our time series
fall between 1900 and 5300 mt for region B — less than a 3-fold
range (Fig. 3), and this level of interannual variability is more
consistent with the results of the most recent stock assessment
(Gertseva and Thorson 2013).

Throughout this paper we have avoided discussion of model
selection to compare the three candidate models. This is partially
due to the difficulty is performing Bayesian model selection
among models that make fundamentally different assumptions
about the data. Furthermore, estimation problems for the strata
and design models make it difficult to perform formal model
comparison. If the model has not converged or are poorly esti-
mated, model selection is affected. This occurs regularly in strat-
ified models when there are few positive observations in a given
strata (as is the case for region C here). The options for addressing
this problem include redefining the strata or changing the sam-
pling design. Both options are time intensive and, in the case of
the multi-species NWFSC trawl survey, this would likely involve
developing a different set of strata for each species. Thus using
a habitat model has the added advantage of avoiding subjective
strata boundaries by using a smooth habitat surface that does not
depend upon subjective boundaries.

By itself, the estimated biomass time series does not provide the
final word on the status of darkblotched rockfish. A full stock
assessment of darkblotched rockfish incorporates information
about age- and length-structure of the population, fisheries catch
and effort, and the catchability of the population to make conclu-

sions about the status of the stock (Gertseva and Thorson 2013).
However, even in this case, improved biomass estimates could
improve the estimates of other biological parameters and final
determination of stock status.

Understanding the cause of among-year variation in biomass
estimates is crucial because it determines how informative data
are regarding population trends. Differences among models
suggest that much of the strata model among-year variation is
caused by random assignment of sampling locations combined
with strong habitat associations of darkblotched rockfish. As sam-
ple locations vary among years, survey tows fall on “good” dark-
blotched habitat in some years and “poor” habitat in other years.
For example, in 2007, 16 surveys tows (13%) in region A occurred
within 500 m of a rocky substrate, whereas in 2008 only 8 (7%)
occurred within 500 m of rocky bottom (Fig. 1; Fig. Al). Dark-
blotched rockfish are negatively associated with rocky habitat
(see Appendix A), so the location of trawls will strongly affect
biomass estimates. The extreme skew of the biomass observations
is an important determinant of temporal variation; there are many
catches near zero but a small number of extreme observations
(1026 tows with >0 catch; median catch = 1.25 kg but 51 observa-
tions >50 kg, 18 observations >100 kg, and 3 observations >1000 kg).

Rare, large catches known as extreme catch events (Thorson
et al. 2011) pose a particular challenge for the strata model because
a small number of above-average observations exert high statisti-
cal leverage and cause the expected density in a given region to
increase disproportionately. Indeed, extreme catches (>100 kg)
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Fig. 3. Comparison of abundance estimates for the three models
and three regions: A (top), B (middle), and C (bottom). Points show
posterior median, interquartile range, and 95% credible intervals
estimates for the habitat and strata models while the design model
shows mean, interquartile range, and 95% confidence intervals. Note
that the y axis varies substantially among panels.
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Table 1. Average coefficient of variation
of total biomass by strata for 2003-2011.

Model
Region Design Strata Habitat
A 0.51 0.38 0.36
B 0.41 0.33 0.33
C nja nja 0.59

Note: Values are the across year average of
the coefficient of variations.

occurred in region A in 2004 and 2008 and catches of more than
1000 kg occurred in 2003 and 2005 in region B. These observations
correspond to the largest differences between the habitat, strata,
and design models (Fig. 3). The habitat model is less sensitive to
these extreme events because different locations have distinct
expected densities based on their habitat variables and spatial
nonparametric term. Thus, in the presence of extreme catches,
the strata model adjusts by dramatically changing the biomass
estimate, but the habitat model accounts for it via its environmen-
tal variables and spatial correlations. Observation of variation
above the rate associated with habitat variables is accounted for
through the spatial variable w. In the case of extreme observa-
tions, the spatial contribution for that location is very large, but
since we assume that w is a smooth spatial surface, only the bio-
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Table 2. Number of survey trawls by year for each
strata, with number of trawls with nonzero biomass in

parentheses.

Region
Year A B C
Depth: 55-183 m 183-549 m 549-1280 m
2003 45 (9) 40 (24) 60 (0)
2004 79 (19) 49 (29) 26 (0)
2005 119 (37) 51(21) 51(0)
2006 112 (43) 63 (35) 42 (0)
2007 123 (49) 71(36) 46 (0)
2008 111 (34) 62 (29) 43 (0)
2009 100 (33) 78 (38) 41(0)
2010 114 (40) 62 (30) 38 (0)
2011 105 (22) 85 (40) 49 (0)

mass estimates at points near to this extreme observation are
affected. In contrast, the strata and design models assume all data
are arising from a single shared process, with all locations provid-
ing exchangeable samples of a single mean. Thus, rare extreme
observations will have a large effect on total biomass estimates.

Additionally, the habitat model accounts for variation by changing
the biological interpretation of model parameters in eq. 2. In the
strata model, all observations within a stratum are considered
exchangeable, independent samples of a single shared mean, p, so
iy represents the CV of the single mean within a strata. In the
habitat model, ¢ represents the CV for the observations at a par-
ticular location — each trawl has a distribution of possible out-
comes whose mean is driven by the habitat covariates and the
spatial location — and so the s describes the variation in out-
comes from a single trawl observation. This addition of an obser-
vation error term aids in accounting for extreme observations.

Finally, our analysis has substantial implications for an entire
class of biological questions built on the analysis of abundance
time series in terrestrial and aquatic systems. Many meta-analytic
analyses treat published time series of abundance derived from
design-based estimators and treat such model output as data in
subsequent analyses (Myers et al. 1999; Knape and de Valpine
2012). We note that if darkblotched rockfish are any indication,
reasonable modeling structures may yield radically different em-
pirical patterns of temporal variability of populations. For exam-
ple, the California Cooperative Oceanic Fisheries Investigations
(CalCOFI) survey has focused on understanding fluctuations of
larval abundance and how complex dynamic models can be used
to explain large temporal variation in larval abundance (e.g., Hsieh
et al. 2005a, 2005b). All of these analyses are derived from time
series of design-based estimates of abundance. The estimators
ignore environmental and oceanographic variables associated
with larval sampling. We suggest that improved precision for
abundance estimates may be possible if these surveys utilize
available habitat information and that different estimators could
potentially alter the conclusions of many such meta-analytic
analyses.
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Appendix A
Methods
Details of the habitat model

Covariate selection

We used only habitat data for covariates that were available for
the entire spatial domain of the trawl survey. We used available
data layers from the Essential Fish Habitat (EFH) Phase 1 report
primarily (NMFS 2013). We included depth, sediment grain size,
bottom temperature, and distance to nearest rocky habitat in our
initial model. Distance to rock was calculated using the Nearest
Features tool (Jenness Enterprises, v. 3.8b) in ESRI ArcView (v. 3.2a)
to calculate the distance from each of the trawl survey sites to the
nearest rock habitat patch. Rock was defined as any grid cell in the
substrate type data layer with a value of 1 or 4. We only used rocky
patches greater than 1 ha in area. All habitat covariates were
centered before model estimation. While we expect many of the
habitat attributes of the trawl locations such as depth and bottom
type to be constant across the entire trawl time series, we know
that other factors that we could not include are also affecting fish
populations. For example, the total biomass of a particular species
may be changing over time — declining due to fishing pressure or
poor recruitment or increasing due to fishing restrictions or fa-
vorable oceanographic conditions. Therefore, we also included
the option of estimating a fixed categorical value for each year.
Adding such a year effect allows for the probability of occurrence
and overall abundance to vary across the time series. We do not
allow for interactions between the categorical year effects, and
thus we assumed a constant effect of habitat variables across years
and only allowed for a discrete shift up or down between years.
Recall, however, that the spatial effect, w, allows for the deviation
from this overall habitat mean to vary spatially among years.

We initially considered including information about biogenic
habitats, but our initial survey of available data for biogenic hab-
itats concluded that the data were too limited in quality and their
spatial extent to be included in our model.

We do not include any region-specific categorical variables
in our model. Because using such categorical variables require
delineating boundaries between regions, and they generate
discontinuities in the occurrence and abundance along region
boundaries. We wished to avoid creating these boundaries and
any discussion about the division of the coast into discrete re-
gions. We avoid arbitrarily imposing a spatial structure for species—
habitat relationships by using the spatial component of the
model to provide flexibility in accounting for continuous latitudi-
nal variation.

We only considered models using the main effects of the habi-
tat covariates and did not consider any interactions among the
covariates. This small number of parameter ensures that the pa-
rameters maintain biological interpretability. The small model
dimension also reduces the likelihood of model over-fitting and
reduces the importance of performing extensive cross-validation
testing to avoid overfitting.

After exploratory analysis, we elected to transform depth and
distance to rock outcrop before their inclusion in the models. We
log.-transformed depth and square-root transformed the dis-
tance to the nearest rock outcrop. The transformation of depth
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improved the explanatory value of depth, and the square-root
transformation was effective at increasing the contrast between lo-
cations that are in close proximity to rocky outcrop, reducing the
statistical leverage of points at great distances from any rock out-
crop.

Computational issues for spatial models

Spatial data present a series of computational problems. In
particular, when the number of observations gets large, standard
procedures to estimate parameters in a point process model be-
come computationally difficult and slow (Banerjee et al. 2008).
The computational issues are entirely driven by the spatial term,
w. Problems arise because the covariance matrix C,, is large and
not diagonal. Because estimation involves calculating the matrix
inverse of C,,, computation can be exceedingly slow. This is known
as the large N problem in spatial statistics (Banerjee et al. 2008;
Cressie and Wikle 2011) and remains a difficult problem even
when explicit matrix inversion is replaced with fast linear solvers.

A number of approaches based on approximating the covari-
ance matrix have been proposed to speed the computation of
spatial models (Royle and Wikle 2005; Banerjee et al. 2008). We
employ the predictive process modeling approach to improve
model computation speed. A thorough discussion of predictive
process approach can be found elsewhere (Banerjee et al. 2008;
Latimer et al. 2009; Finley et al. 2009), so we only outline the
methods here.

Briefly, the predictive process approach develops an approxi-
mation of the full covariance matrix C,, using a much smaller
covariance matrix. To do this, we establish a new set of points that
are interspersed with the observed locations. These locations are
known as knots, and the number of knots is much smaller than
the number of observations. For the statistical model, we have to
estimate a spatial component for each knot location, w*, instead
of'a spatial component for each observation. We estimate a spatial
covariance matrix among the knots and predict the value of spa-
tial effects at the observed points from the knots. The key advan-
tage of introducing the knots is that we only have to calculate the
inverse of the covariance matrix of the knots; because the length
of w* is much less than the length of w, the computational savings
are substantial. We employ the “modified” predictive process
model described by Finley et al. (2009). This modified model con-
tains an adjustment parameter estimates to avoid bias in the
estimation of spatial parameters. Bayesian estimation of w also
allows for uncertainty in estimates of the parameter 6.

The use of predictive process models requires the consideration
of two additional model aspects. The number of knots needs to be
specified and the location of knots needs to be determined. Using
a smaller number of knots will speed computation time but result
in a smoother, less rugose spatial surface compared with a model
that uses the raw data (Banerjee et al. 2008). Following some pre-
liminary exploration, we used 150 knots for the probability of
occurrence model. For the positive component, we used 91 knots.
To determine the knot locations we selected a single set of knot
locations using a k-means clustering algorithm on all years of
observations simultaneously (via the k-means function in R). We
then used this single set of knot locations for each year in the
model estimation.

We used a block-diagonal covariance matrix to avoid confusing
temporal and spatial variation (see eq. 5). Initially we considered
model structures in which (r; was allowed to vary among years as
well as models in which it was constant among years (i.e., 0}2, =032).
Estimating a distinct variance for each year did not greatly change
model predictions because estimated yearly variances were very
similar among years. However, attempting to estimate yearly vari-
ance slowed model convergence and mixing without dramati-
cally improving model fit. Thus in the final runs we always used a
single, shared 2. Similarly, we estimate a single 6 for all years in
the final model runs. These model assumptions force the scale of
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Table A1l. A list of the habitat covariates included in the darkblotched
rockfish statistical model.

Forms included
in the model

Log(depth)

Log(depth)?

Bottom temperature
(Bottom temperature)?

Habitat covariates

Depth (m)

Bottom temperature (°C)

Sediment grain size (¥ scale; Krumbein Grain size
and Sloss 1963) (Grain size)?
Distance to nearest rocky outcrop (km) (km)°-5

spatial aggregation to be similar in all years, but allows the loca-
tion of spatial aggregations to vary.

Estimation of the habitat model

General descriptions for estimating predictive process models
can be found in Banerjee et al. (2008), Finley et al. (2009), and
Latimer et al. (2009). Freely available software for parameter
estimation using predictive process models and associate can be
found in the R package spBayes on the CRAN website (http://cran.
us.r-project.org/). Excellent tutorials are also available there. We
implemented our own code in R to make use of the block-diagonal
covariance matrix (eq. 5) and speed computation for our specific
situation.

MCMC details

Priors

A key component of Bayesian models is the specification of
prior distributions for the parameters. By tradition, noninforma-
tive priors have been used in most ecological and fisheries appli-
cations. Table A2 summarizes the prior distributions for the
parameters. We used diffuse multivariate prior distributions for
the regression parameters, conjugate inverse-gamma distributions
for 02, and uniform distributions for 6 and . We constrained the
scale parameter 6 to the range {20 1000} for darkblotched rockfish
in the probability of occurrence model based on visual inspection
of the spacing of trawl survey locations with the intention of
precluding the possibility of estimating spatial structure that is at
a finer scale than the survey data. Because the abundance part of
the model only includes nonzero observations and thus comprises
a smaller subset of the data, the density of observations decreased
and the distance between observations increased. Therefore, we
used 6 ~ Unif (50, 1000) for the positive model.

Full conditional distributions

We are interested in calculating the posterior density for the
parameters and latent states given the observed data. Let z(s)
represent the observed presence-absence data of the model, then
the full posterior for the presence-absence component can be
written,

ple(s). ", B, o®|z,(s)] = plz,(s)| pS)lpld(s) W, B. 6. 0]

(A1) ) ,
p[w*|6, oIp[B, 6, 0]

with the right hand side showing how the posterior can be fac-
tored into four components. We can write a similar model for the
abundance model. We estimated ¢ and w* as latent states. To
understand the value of the nonparametic term, w*, we also ran a
set of nonspatial habitat models (i.e., w = 0) for comparison. The
nonspatial habitat model is a regression model that assumes all of
the observations are independent. These nonspatial habitat mod-
els do not involve estimating w*, 6, or ¢2. For models with and
without w* we use a mix of Gibbs and Metropolis-Hastings sam-
pling steps to estimate parameters (Gelman et al. 2013). To the
nonspatial habitat models we added a small, fixed amount of pure
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Table A2. Prior distributions used in the habitat statistical model.

Probability of

Parameter occurrence Abundance
B Multivariate normal Multivariate normal

(0, 1002I) (0, 1002I)
of Inverse-Gamma (3, 1) Inverse-Gamma (0.75, 0.5)
0 Uniform (20, 1000) Uniform (20, 1000);

Uniform (50, 1000)

v nja Uniform (0.1, 5)

Note: I is the identity matrix.

error to the model to ease MCMC sampling: e.g., the probability of
occurrence is then logit(¢(s;)) = X(s;)B + ¢;, where ¢; are indepen-
dent and ¢; ~ N(0, 72). The positive model had an analogous form.
For the probability of occurrence and abundance models, we set
72 =0.01.

Due to a large number of models under consideration, we ini-
tially ran a single MCMC chain for each model. For the models that
appeared to best match the data, we ran subsequent MCMC chains
from dispersed starting point to verify convergence to a single
stationary distribution. For probability of occurrence models, vi-
sual inspection of chains suggested strata models converged rela-
tively slowly but had decent mixing properties. Thus we ran a very
long burn-in chain 0f 100 000 iterations and a monitoring chain of
50 000 iterations. While both of these chain lengths were exces-
sive, the chain length removed any questions about model con-
vergence. We then used the ending values from the strata model
to initiate the habitat models. The main advantage of initiating
the habitat model at the converged nonspatial habitat model was
that it provided values of the latent variables ¢ that were rela-
tively close to each observation. The estimates of 8 often changed
substantially with the addition of the spatial surface described by
w*, but reasonable starting points for ¢ greatly improved model
convergence speed. Because habitat models ran much more slowly
and the parameter values were already near their stationary dis-
tribution, we ran a 20 000 iteration burn-in and a 10 000 iteration
monitoring run. In most cases, the MCMC chains for the spatial
model converged but mixed relatively slowly (i.e., MCMC draws
from the stationary distribution were highly autocorrelated).
Therefore, we performed three independent MCMC runs for the
probability of occurrence model and combined the output.

The positive model had better MCMC characteristics overall.
We used a burn-in of 30 000 and a monitored MCMC of 50 000
iterations for the strata model and a burn-in of 5000 and moni-
tored MCMC of 10 000 iterations for the habitat model. We ran
multiple chains to confirm convergence.

Model selection for the habitat model

In this section, we discuss how we compare among the possible
spatial habitat models using posterior predictive scoring rules.
Generally, we are interested in identifying models that make good
predictions. A way of formalizing this desire for good predictions
is to say that we want to maximize the predicted probability of
observing the value of a new data point, z,,.,,, given our previously
observed data and our estimated parameters. For notational sim-
plicity, let © be the estimated parameters and latent variables in
the model. Thus, a good model would be one that provides a large
value of p(z,e.|z, ©). Proper rules for comparing a data value
Zew With its predictive distribution involve the logarithm of the
height of p(z,,e, |2, 0), OT 10g(p(2ew |2, O)) (Gneiting and Raftery
2007; Krnjajic et al. 2008; Draper and Krnjaji¢ 2010; Draper 2013).
This metric of predictive quality is known as the log-score (LS).

Ideally, we would estimate log(p(z,,.. |2, ©)) via cross-validation;
we would exclude some set of our observations from our model
estimation procedure and predict those excluded values. This sug-
gests we would need to run a number of MCMC models for each
covariate and each run would have a different set of data points

excluded from model estimation (e.g., Draper and Krnjaji¢ 2010;
Shelton et al. 2012; Draper 2013). In practice, this is impractical
due to the long computing times for models estimated with MCMC.
Fortunately, with reasonably large sample sizes, we can use what
is known as the full sample log-score that will approximate the
cross-validation derived log-score (Krnjajic et al. 2008; Draper and
Krnjaji¢ 2010; Draper 2013). For each draw of the MCMC, g, we
calculate the predicted probability of each observed data point, i,
then

G n

(A.2) LS = 2 log{p(zi
g= 1

=1 i=

z, @g)

here n is the number of observations and G is the number of
MCMC iterations. Larger log-scales indicate a higher overall match
between prediction and observations. An alternative scoring cri-
terion would be to divide the right side of eq. A.2 by n to provide
log-scores on a per observation basis.

For the habitat model, we ran a series of models (nonspatial and
spatial) that included various combinations of predictor variables
and selected the models that maximized LS. For both the proba-
bility of occurrence and positive models we included a fixed year
effect. We also inspected the posterior distribution of parameters
and confirmed that the regression parameters for the final models
were centered away from 0. In all cases, models that included the
spatially smooth term w were strongly preferred over nonspatial
models.

Constructing prediction maps

After producing posterior distributions for model parameters
and the spatial latent variables at the knot locations, we used
draws from the joint posterior distribution to generate predictive
map for probability of occurrence and for abundance. These two
surfaces correspond to a surface for ¢ and a surface for u, respec-
tively. These two surfaces can be combined to provide a surface for
the expected value of catch, E[Z].

We first generated a gridded (2 km x 2 km) coast-wide map of
the model spatial domain. The north-south extents of the domain
approximated the US border, while the shoreline and seaward
boundaries were defined by a vector shoreline geospatial data
layer (NOAA 2001), and the 1600 m isobath (3-arcsecond grain,
(~86 m) NOAA 2003), respectively. We created the 2 km x 2 km
gridded polygon data layer using Generate Regular Points in
ArcMap, which is a Hawth’s Tools ArcGIS tool that runs in ArcMap
(v. 9.3.1). We overlaid this gridded domain with the four habitat
covariate data layers and calculated the corresponding values for
each of the grid cells. Since the covariates were continuous vari-
ables, each was expressed as an area weighted mean for each of
the grid cells.

We use s, to denote the predicted grid centers along the coast.
For depth, sediment grain size, and distance to rock outcrop, the
covariate values at each location were consistent across years. For
bottom temperature, we did not have a direct measure for each of
the 2 km x 2 km grid cells, so we used the trawl survey site bottom
temperature data to interpolate a gridded surface of bottom tem-
perature for each year (2003-2011). We used the kriging command
ESRIARC/INFO grid (v. 9.2) to interpolate bottom temperature. We
interpolated bottom temperature on a 1 km x 1 km grid for each
year of the trawl survey data using the following kriging parame-
ters: model domain polygon used as “barrier cover”; SPHERICAL
semivariogram model for kriging method; maximum of 12 neigh-
boring input sample points and, 100 km search radius to select
neighboring points. We also used these interpolated bottom tem-
perature data layers to fill in missing bottom temperature in 272
of the bottom trawl survey sites.
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Fig. Al1. Predicted darkblotched rockfish density (kg-ha=!) in 2008. Crosses (+) indicate the location of survey trawls at least 500 m from rocky
substrate, dots () indicate trawl location near rocky substrate (<500 m). (Left) Expected catch per hectare in kilograms of darkblotched
rockfish from the habitat model in 2008. Mean of the posterior predictive distribution is shown for the centroid of 2 km x 2 km cells. Faint
lines outline the areas used in the strata based models. (Center) Expected catch per hectare from the strata model in the three statistical
areas. Arrows in the legend bar indicate the expected catch for the three areas. (Right) Black patches delineate the location of rocky substrate

in the areas. Faint lines delineate statistical region boundaries.
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We used a slightly different approach for calculating distance
to the nearest rocky habitat patch for the 2 km x 2 km gridded
data layer. Calculating the distance from the centroids of each of
the ~43 000, 2 km x 2 km grid cells to the nearest edge of each of
the rocky habitat patches exceeded the capabilities of the Near-
est Features tool that we used in generating the covariates for
each of the bottom trawl survey sites, so we used the NEAR com-
mand in ESRI ARC/INFO (v. 9.2), which is a more robust software
package.

Each year modeled had a distinct offset (intercept) correspond-
ing to a coast-wide change in the probability of occurrence or
abundance. Given these maps, we can generate predicted values
for s,. For the probability of occurrence model, we generate pre-
dicted values at point s, for the gth draw from the posterior,

(A3)  logit(¢(sy) = Xy(s))BF + %Y;
+ (s, 6%)((0P)°C(69) "'W™E + m(s)
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n

Fig. A2. Results for the -GLMM for darkblotched rockfish. Top row: Histogram of distribution of predicted probability of occurrence for

2 km x 2 km grid cells in 2008 for regions A (left; N = 3966 prediction locations), B (center; N = 1972), and C (right; N = 2477). Bottom row:
Histogram of expected catch for the three strata. In all panels, the dashed line shows the mean for the habitat model and the solid line the
mean from the stratified model. Note the very long tails in the abundance models.

| |
500 — | Region A 250 - Region B 1500 - Region C
|
400 | 200
>
8 | 1000 —
o 300 150
-
8
b=: 200 = 100
= 500
100 - 50 -
0 0 0
| | | I | | | | | I | I | | | | | I
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probability of Occurrence
Region A 1000 - Region B Region C
3000
1500 —
800
>
&}
@ 2000 - 600 -
2 1000
=
2 400
1000 - 500
200
0 0 0
I | | | I I I I I I I I | I
0 20 40 60 0 100 150 o 1 2 3 4 5 6

Expected catch (kg ha'1)

where the first term on the right side is the predicted value from
the fixed habitat covariates, the second is the effort offset, and the
third term is the linear interpolation of the spatial effect at each
predicted point from the sampled knot locations (i.e., the stan-
dard kriging projection). The fourth term, %(s), is a bias correction
term for the spatial that arises as project from a small number of
knots to the observed locations (see Finley et al. 2009). Specifically,
1(s) ~ N(0, 2) where X = Diag(C(s, s) — cX(s, 0)C*(6)c(s, 0)) and C* is
the correlation matrix for knot locations, C is the correlation
matrix among observations, and c is a matrix describing the co-
variance between the prediction points and the knot locations
(see Banerjee et al. 2008; Finley et al. 2009). Importantly, n(s) is a
vector of independent normal random variables that accounts for
the averaged bias underestimation over the observed locations
(Finley et al. 2009). The addition of m(s) makes this a modified
predictive process model (Finley et al. 2009). An analogous model
was constructed for the positive component of the model. For all
predictions we use an effort offset of 1 ha (0.01 km?) swept for
prediction (i.e., y; = 1).

Each draw of the posterior distribution could thus provide pre-
dicted value of logit(¢) (or for the positive portion of the model,
log(m)) at each predicted location. Each component can then be
back-transformed to generate a map of predicted probability of
occurrence (bounded by 0 and 1) or the expected biomass caught.

To save computing time, we selected 500 evenly spaced draws
from the joint posterior distribution, produced a prediction from
each of the 500 posterior draws. We then calculated the mean,
median, and credible intervals for each prediction location. As

an aside, because the fixed and spatial components of the above
model are additive, it is also possible to produce a map derived
exclusively using the habitat covariates. This can be thought of as
a predictive map for species occurrence based exclusively on the
measured habitat characteristics unmodified by unobserved hab-
itat covariates.

Discussion and results

Both design and strata models have a very difficult time esti-
mating parameters for strata that have few positive observations.
In our example, region C has no positive observations of dark-
blotched for any year (Table 2). As a result, the design and strata
models cannot estimate the abundance portion of the model. The
design based model estimates 0 biomass in region C each year
while the strata model estimates tiny biomass with unreasonable
uncertainty bounds, which are determined by the upper and
lower bounds on the prior for positive abundance (mean biomass
0.001 mt, SE = 10"). Given that darkblotched rockfish have been
observed to 900 m depth (Love et al. 2002), the actual number of
darkblotched rockfish in this strata is low but nonzero as sug-
gested by the habitat model.

The disparity between the strata and habitat model is surpris-
ing. In general, we expect the use of habitat covariates to provide
nearly equivalent estimates to the strata model as long as sam-
pling is random with respect to the habitat covariates (Cochran
1977). In our case, discrepancies between density estimates arise
primarily because the habitat model includes information on the
location of rocky substrate while the stratified model does not and
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Fig. A3. Marginal effect of the distance to rock on the probability
of occurrence (top) and expected catch (bottom). The solid line shows
the mean effect and the dashed line the 90% credible interval.
Curves are plotted for a depth of 180 m and bottom temperature

of 7 °C.
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because survey locations are not random with respect to rocky
habitats (Fig. 1; Fig. A1). Rocky outcrops are undersampled by the
survey because trawl gear is damaged by rocky substrate. Across
the entire time series for regions A, B, and C, 6.1% of the area is
considered rocky habitat, yet only 3.0% of trawls occur on rocky
bottom. Furthermore, darkblotched rockfish occurrence and
abundance both are estimated to decline in near rocky outcrops
(Fig. A3). The net result is that the habitat model estimates smaller
abundances on rocky substrate while the strata model assumes
these rocky “untrawlable” habitats are identical to the sampled
locations, resulting in higher probability of occurrence and abun-
dance estimates in the strata model.

To date, generalized additive models (GAMs) are the most fre-
quently used tool exploring species—habitat relationships (Wood
2006; Valavanis et al. 2008; Johnson et al. 2013). GAMs are often
advocated based on their ability to estimate occupancy and abun-
dance as a complex, nonlinear function of measured covariates.
While GAMs allow for complex nonlinear structures, a major
drawback to their use is that estimated parameters may lack bio-
logical interpretation. Furthermore, when covariates are allowed
to interact with spatial locations in complex ways (e.g., when

Can. J. Fish. Aquat. Sci. Vol. 71, 2014

latitude and longitude are included as terms in the model), GAMs
have the ability to match virtually any pattern present in the data,
causing concerns about model overfitting and the true predic-
tive power of such models (Telford and Birks 2005; NMFS 2013),
though cross-validation methods can reduce this concern (Wood
2006; Banerjee et al. 2008). Thus, while the flexibility and com-
plexity of GAMs may improve the match between observations
and data, they do not necessarily translate into improved biolog-
ical insight. However, in a Bayesian context, GAMs and GLMMs
share many attributes and are closely connected (Wood 2006;
Paciorek 2007; Banerjee et al. 2008; Cressie and Wikle 2011). Our
use of Bayesian methodology and use of predictive process models
provides direct descriptions of parameter and abundance uncer-
tainty (Royle and Wikle 2005; Banerjee et al. 2008; Swanson et al.
2012).
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